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The most time-consuming step in the analytical method for absorption correction is the examination 
for each Howells polyhedron of the large number of tetrahedra formed from all possible sets of one 
auxiliary point with the faces of previously found tetrahedra. In the present method, a formula is 
presented for the absorption of a polyhedron (a slice) with two parallel faces, which are planes of 
constant absorption. With this formula, the absorption of a Howells polyhedron can be calculated, 
with much less effort, by systematically dividing it into slices. 

Introduction 

Absorption correction by the analytical method has 
the immense advantage over numerical integration of 
being exact, but it suffers from being slower in most 
circumstances. This paper presents an alternative 
method of calculation that increases the speed; it may 
also be of value in other problems concerned with 
absorption and extinction. 

The nomenclature used is that of De Meulenaer 
& Tompa (1965) and Alcock (1970), and a sample cal- 
culation is presented based on the example of the latter. 

The analytical calculation has several sections for 
each reflexion. These are, with the relative times taken 
(by the Fortran program ABSCOR running within 
the X-Ray 63 system): 

(iv) calculating the transmission for each How- 
ells polyhedron, 

(i) calculation of the diffraction angles and 
general overheads, 9 % 

(ii) finding the auxiliary points, 29 
(iii) selecting those points whicb are the ver- 

tices of each Howells polyhedron, 11 

51 

Stages (iii) and (iv) are considered here. Stage (iii) can 
be reduced by storing for each point a list of the How- 
ells polyhedra it can contribute to, once the point is 
found. This leaves stage (iv) as the most important. 

A Howells polyhedron is defined as the portion of a 
crystal which is reached by rays entering the crystal 
through one particular face and leaving through one 
particular face (possibly the same one). This means 
(De Meulenaer & Tompa, 1965) that within the poly- 
hedron, the loci of points of constant absorption are a 
series of parallel planes on which the rays have constant 
path length in the crystal. These planes may be arbi- 
trarily oriented in relation to the polyhedron vertices 
and faces. In the original method, the explicit formula 
for the transmission of a general tetrahedron is used. 
The polyhedron is split up into its component tetra- 
hedra by considering all combinations of a face and a 
vertex, and discarding those not producing genuine 
tetrahedra. 



N. W. A L C O C K ,  G. S. P A W L E Y ,  C. P. R O U R K E  A N D  M. R. L E V I N E  441 

In the present approach, the total transmission of a 
polyhedron is obtained differently. The polyhedron is 
divided into slices by planes parallel to the loci of 
constant absorption, so that each vertex lies on a plane 
(such as the shaded plane of Fig. 1). Each slice is then 
considered separately. It is bounded by two parallel 
planes and its own vertices are either vertices of the 
original Howells polyhedron, or lie on an edge be- 
tween two such vertices (Fig. 1). A transformation (a 
pure rotation) is applied so that the z axis is perpen- 
dicular to the parallel planes, and the contribution to 
the absorption of this slice can then be readily calcu- 
lated. 

Contribution of  a slice 

The area of a convex polygon in a plane (,4) perpen- 
dicular to the z axis, whose vertices have coordinates 
XI,y,,ZA is: 

N 
Da = ½ ~ (x ,y t+I-Y,X,+I)=½E (1) 

1=1 

(with a cyclic indexing). To obtain the volume of a 
slice, the vertices of the top and bottom planes must 
be made to correspond by introducing extra dummy 
vertices wherever two edges from vertices on one 
bounding plane meet at one vertex on the other plane 
(as at 3 in Fig. 1). 

Then, the coordinates of a point on an edge of the 
slice between the ith vertices on planes A and B ar9 
(x~ + t6x,) ; (Yi + tJyi) ; (za + tOz) where Jxt, JYl, 6z are the 
differences in x, y and z coordinates for the ith vertices 
on planes A and B, and t is the fractional distance of 
the point from plane A to plane B. The area of the 
polyhedron at level T (fractional coordinate t) is: 

N 
D, = ½ ~, (x, + tOx,) (y, +1 + toy, + 1) 

1=1 

- ( x , + l  + tOx,+O (y ,+ toy,) (2) 

= ½(E + tF+ t2G) (3) 

with E as given in equation (1), 

12 15 

Y 

3 5 
Fig. 1. A perspective view of  the Howells  po lyhedron  f rom the 

crystal (Fig. 2) of  Alcock  (1970) lit th rough  faces 7 and  [1. 
The shaded plane is one of constant absorption, passing 
through points 8 and 10 and the interpolated points A and 
B. The axes shown are the original and not the rotated ones. 

and 

N 
F= ~, Oxtyl+l+OY~+lx,-Ox,+ly~--Oyix~+l 

i=1 

N 

a- -  ~, 6x~6y~+l-6y, Ox~+l . 
i=1 

The total volume of the slice is: 

Vs = Dtdz (4) 
ZA 

or, substituting from t=(Zt--ZA)/(ZB--Za), i.e. 

d t=dz / ( z~ - za )  , 
, I  

=½(zB-za )  ( z + r / 2 + O / 3 )  . (5) 

In the absence of absorption, the diffracted power is 
proportional to this volume, but when absorption is 
present, the diffraction from a plane of the slice is 
given by 

Dt exp ( - / tP t )dz  

where Pt is the path length (incoming and outgoing) of 
rays diffracted in this plane. Because of the definition 
of the Howells polyhedron, Pt is given by 

1', = P A + tJP 

where PA is the path length to plane A, and OP the 
difference between planes A and B, 

O P = P B - P a .  

The total diffracted power is 

Rs = D, exp ( - / tP , )dz  
zA 

o r ,  

Rs = ½(zB- zA) exp ( - / tPA) 

x I'o (E+tF+t2G)  exp ( - / t t dP)d t  (6) 

=½(zB--za) exp ( - / t e a )  
x [exp ( - / t tOP) { -E / / tOP-F( / t tOP + 1)//t2(JP) z 
-O[/t2t2(OP) 2 + 2/ttOP + 2]//ta(OP)Z}l~ (7) 

=½(zn-za)  exp ( - / t P a )  exp ( - / tOP)  
× { -  E / / t o v -  F ( ~ P  + 1)//t~(~e) ~ 
- O[/t~(OP) ~ + 2/tOP + 2]//t~(Oe) ~} 
- ½ ( z n - z a )  exp (-/tPa) 
x [- E//tOP- F//t2(Op)2- 2G//ta(Op)3] (8) 

which can be used more conveniently by substituting 
in the first term: 

exp ( - / t P n ) = e x p  ( - / t P a )  exp ( - / t O P ) .  

The transmission of the Howells polyhedron is given 
by the sum of the Rs values for each slice, and that for 
the whole crystal, Rr, by summing the transmission 
of each polyhedron. The transmission factor is then 
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simply A = R r / V r  ( V r = t o t a l  crystal volume). To 
determine dA/dlz for the extinction correction, Rs for 
each slice can readily be differentiated with respect to 
/~, and these derivatives summed and divided by VT in 
the same way. This is an improvement  on the numerical  
method used in A B S C O R  which suffers f rom rounding 
errors if/z is small  or if  the computer has a short word 
length, al though analytical  differentiation may also be 
possible there. 

Application to a polyhedron 

A Howells polyhedron is defined by the coordinates of  
its vertices relative to the standard orthogonal  axes on 
which the crystal is defined. These vertices are arranged 
in order of  increasing path length ( P ,  of  the rays 
through the crystal) and they must be converted to the 
axis set with z normal  to the planes of constant path 
length. This can always be achieved by two rotations, 
about  the x axis by 0 and about  the y axis by (p, i.e. by 
a matr ix of  form 

[i 0 0 lf os  0 
cos 0 sin 0 1 0 

- s i n 0  cos0J  ksin~0 0 cos~0 

= s in0s inq~  cos0  s i n 0 c o s  . (9) 
[cos 0 sin 9 - s i n  0 cos 0 cos 

A convenient method of obtaining such a matrix is 
given in the Appendix.  

With  the vertices arranged in order of  increasing 
path length, the polyhedron can be divided into slices 
by planes through the vertices corresponding to each 
different path length found. To achieve the necessary 
correspondence between the vertices on the top and 
bot tom of each slice, these have to be in sequence, and 
the edges joining each vertex to vertices on the next 
slice must  be identified, so that any d u m m y  vertices 
can be inserted. 

This identification of corresponding points on the top 
and bot tom of  a slice would be very difficult just  from 
the vertices of  the Howells polyhedron, but  fortunately 
the edges of  the polyhedron obey definite rules, and 
when each auxiliary point is found [stage (ii)] a list can 
be made of  all the possible edges joining it to auxiliary 
points already known. The rules for these connexions 
are in Table 1.* For  a part icular Howells polyhedron the 
edges can then be extracted from the complete list. 

The ordering of  the points bounding one slice so that 
they form a convex polyhedron has proved to be the 
trickiest aspect of  these calculations. These points may  
be either vertices of  the Howells polyhedron,  or points 
interpolated between two vertices. The general proce- 
dure is as follows. Starting with one of the points at one 
level (already ordered), the edges that descend from it 
are examined. Each such edge will correspond to a 

* These rules have not been deduced systematically and 
further connexions maypossibly occur in complex cases. 

Table 1. Rules for  joining edges in the polyhedron 
Point Connected to preceding points 
Vertex A To another vertex by an edge of the original 

crystal. 

SPO B To the vertex generating it (V1). 
C To the second vertex of any edge from II1 

that lies in the face containing the SPO. 
D To another SPO in the same face, generated 

by a vertex connected to V1 by a crystal edge. 

SPQ E To the SPO generating it. 
F To the vertex (V1) generating this SPO. 
G To the vertices (V2, and/or II3) of the edge 

which generates the SPQ if they are joined 
to the SPO or to V1. 

H An $21 is connected to an S12 if the II1 of 
the $21 is the same as the V2 or V3 of the S12 
and the V1 of the S 12 is the same as the Va 
or 1/3 of the $21. 

SOP I To the vertices at the ends of the edge con- 
taining it. 

J To any other SOP or SOQ in the same edge. 
K To an SOP in the same face that is generated 

by the same edge. 
L To an SPO in the same face that is generated 

by a vertex of the generating edge. 
M To a vertex of the generating edge, if it and 

the SOP lie in the same face. 
N To an SQP if the 111 of the SQP lies in the 

edge containing the SOP and the SQP is 
generated by the edge generating the SOP. 

O An S02 in edge B, generated by edge A, is 
linked to an S01 in edge A, generated by 
edge B. 

S00 P To the 4 points in the same face that produce 
it. 

Q To an SPQ if its vertex V1 lies on the edge 
(P) generating the S00 and the edge of the 
SPQ is the edge (Q) generating the S00. 

R To a vertex common to both the edges gen- 
erating the S00. 

S To another S00 in the same face with either 
the same edge (P) or the same edge (Q). 

point  in the next level. The edge may terminate in this 
next level at a vertex of  the polyhedron,  but  if  it 
descends further, a point  must  be interpolated. If  each 
point  on the upper level generated only one point  on 
the lower level, these would automatical ly be ordered. 
Therefore an ordered list can be built  up of  the first 
points generated, plus an unordered list f rom any 
further points (with a note of which of the ordered 
points it relates to); all the points on the bot tom of a 
slice that  are generated by one point  on the top of  the 
slice must  be adjacent. The procedure for ordering the 
points on the topmost  level is similar. The first two 
points encountered form the ordered list and any 
further points form the unordered list. 

For  the insertion of  the unordered points into the 
ordered list, a property of a convex polyhedron is used. 
The centre of  gravity of  any selection of  its vertices 
lies within (or on the edge of) the polyhedron formed 
by the selected points and of  polyhedra formed by these 
and other points. A new origin is chosen at the centre 
of  gravity of the ordered points. Then, if  point  3 is to 
be inserted either between points 1 and 2 or after 
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point 2, a decision can be made by examining the line 
1-2. If  3 is on the opposite side of the line from the 
origin, i.e. its distance from the line is positive, then to 
retain a convex polygon it must be inserted between 
points 1 and 2. In the special case of the origin falling 
on the line 1-2, a positive distance corresponds to an 
order 1-3-2. If point 3 coincides with points 1 or 2 
then its position is decided by considering which point 
on the previous level it is connected to. 

Example 
Fig. 2 shows a crystal with the auxiliary points that 

are found in stage (ii) of the absorption calculation 
(Alcock, 1970). At the same time the edges, which will 
be the edges of the Howells polyhedra, are obtained. 
These are given in Table 2. The Howells polyhedron 
lit through faces 7 and 1 can be used to illustrate the 
rest of the calculation, and is shown in Fig. 1. Its 
coordinates and path lengths are given in Table 3. 
A rotation matrix calculated as in the Appendix is: 

- 0.8988 0.00 0.4383 ] 
-0 .2930 0.7437 -0 .6009 
-0 .3260 -0 .6685 -0 .6685 

and this gives the rotated coordinates in Table 3. 
There are two points with minimum path length, 3 and 
5, arbitrarily taken to be in this order. One edge joins 
3 to 5 at the same level, and two edges descend from 
3. The first goes to 8 at the next level. This therefore 
starts the list of ordered points at level 2. The second 
edge goes to 12 at level 3 and so point A must be inter- 
polated at level 2. Its order relative to point 8 is un- 
known. Similarly, considering 5, point 10 is added to 
the ordered list and an interpolated point B to the 
unordered list. 

The centre of gravity of the ordered points lies 
midway between 8 and 10, and the distance of the 
point A from line 8-10 is calculated positive. A is 

i / ~  ii 

"(~ li 
,\ 5 

\'~ 4 

/ / ,'1 
. - - /  / /  ~ 1 1  3/" ',/ I 

', ' ; ,L./" 
\ / /  /~19 10 

Y_~. 16 8 

Fi ~.2. The crystal of Alcock (1970) showing the vertices and 
the auxiliary points. For clarity, this crystal was chosen to 
avoid any points of type SPQ. Face 7 is bounded by vertices 
3, 5, 8, 10 and face 1 by vertices 1, 2, 3, 4, 5. 

Table 2. Edges of the Howells polyhedra for the example 
given in the text 

Point Type 
11 S10 
12 $10 
13 $20 
14 S01 
15 S01 
16 S02 
17 S02 
18 S00 
19 S00 

Connexions 
1 by B; 6 by C 
3 byB; 8by C; 11 byD 
2 by B; 7 by C 
2 b y M ;  7 b y I ;  9 b y I ;  11 byL 
5 b y M ;  9 b y l ;  10 byI ;  12 byL 
1 b y M ;  6 b y I ;  8by1;  13 byL 
4 b y M ;  9 b y l ;  10by 1; 13 b y L ; 1 5 b y J  
2 b y R ;  11 b y P ;  13 b y P ; 1 4 b y P ; 1 7 b y P  
1 byR;  6 b y P ,  11 b y P ; 1 3 b y P ; 1 6 b y P  

therefore inserted to give the order 8-A-10 (i.e. 
10-8-,4 by cyclic permutation). B is then examined in 
relation to point 10, and specifically the line A-10; it 
has a positive distance from this line and so is inserted 
before 10, giving a final order 8-A-B-10. The calcu- 
lations for the first slice can now be made using these 
points and points 3 and 5 (both doubled) to give E, 
F and G of equation (3) as in Table 3, a volume of 
11.71 and a diffracting power of 3.48. For the second 
slice, the order of points 12 and 15 follows automati- 
cally, and the calculations give a volume of 11.17 and a 
diffracting power of 0.78. 

Results 

After incorporating the algorithm described here, and 
after combining the selection of points for Howells 
polyhedra with their finding, the times taken for the 
various parts of the program are (in arbitrary units): 

New 

Finding and selecting points 
Transmission of polyhedra 
Angle and other calculations 

32 42 % 
34 45 

9 12 
75 

Old 
Finding points 29 
Selecting points 11 
Transmission of polyhedra 51 
Angle and other calculations 9 

100 

Thus there has been an overall saving of 25 %. The 
test crystal is a simple one with only seven faces and 
for more complex cases the saving should be greater. 
There is a penalty, the increased storage needed for 
the array containing the edges of the Howells poly- 
hedra. 

Further gains in speed must come from improve- 
ments in stage (ii). One suggestion has been made by 
Dr H. Tompa (private communication) but has not 
been tested in a program. This is to speed up the calcu- 
lation of intersections of rays and faces, and hence of 
the coordinates of the auxiliary points by transforming 
the crystal for each reflexion to a set of non-orthogonal 
axes with x as the incoming ray direction, y as the out- 
going ray direction and z chosen conveniently. The 
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Table 3. Stat•tics f o r  the example given in the text  
Optical path Original coordinates 

Point length x y z 
3 0.0 2.5 3.75 -2.5 
5 0.0 2.5 0.0 1"25 
8 2.04 -2.5 3.75 -2.5 

10 2.04 - 2.5 0.0 1.25 
12 4-83 -2.5 0.92 - 1.15 
15 4.83 -2.5 - 1.67 -0.42 

Rotated coordinates 
x y z 

- 3"34 3"56 - 1"65 
- 1"70 - 1"48 - 1"65 

1-15 5.02 -0-02 
2"79 - 0"02 - 0"02 
1.74 0-74 2.21 
2-06 -0-26 2.21 

Interpolated points 
A 2.04 
B 2.04 
For slice 1: the vertices are paired and ordered 

8 A B 10 
I I l I 
3 3 5 5 

- 1"20 2"37 -0"02 
-0.11 -0"97 -0-02 

and E=26.90, F= -21-41, G= -5.49. 

For slice 2: the vertices are paired and ordered 
12 12 15 15 
I I I I 
8 A B 10 

and E=0.0, F=6.37, G=20.53. 

return to orthogonal coordinates could be made at the 
same stage as the rotation of individual polyhedra 
described above. 

Another place for improvement may be the treat- 
ment of coincident sets of auxiliary points. These may 
occasionally arise by chance, but appear systematically 
when ray 1 through one vertex (A) intersects ray 2 
through another vertex (B). This happens when the 
plane containing ray 1 and ray 2 is parallel to the edge 
joining vertices (A) and (B), The result is that two 
S12 and two $21 points all coincide. At present 
coincident points are tested for and eliminated during 
stage (iv) but it would probably be better to eliminate 
the coincident points during stage (ii), naming a new 
type of point ( S A B )  formed by the intersection of a 
ray 1 through vertex (A) with a ray 2 through vertex 
(B), combining the properties of the original S12 and 
$21 points. 

APPENDIX 

BY M. R. LEVINE 
Work first presented by Levine (1965) has been in- 
corporated in a method of obtaining the rotation 
matrix to make the planes of constant absorption cor- 
respond to constant z coordinate. Consider a reflecting 
point x ' , y ' ,  z' whose incident ray passes through face 1 

alx  + b ly  + clz =dl 

and whose diffracted ray passes through face 2 

azx + bzy + czz = d2. 

The path length, p, through the crystal of a ray dif- 
fracted at x ' , y ' , z '  is then 

dl - axx' - b ly '  - clz' d 2 -  a2x' - b2y' - c2z' 
P = cos cq ]/(a 2 + b 2 + c~------) + cot 52~(a-22 + b 2 + c22) 

(10) 

where cq and 52 are the angles between ray 1 and the 
normal to face 1, and ray 2 and the normal to face 2. 
For a particular value of p, equation (10) is the equa- 
tion of the plane for which the path length has this 
value. If ax, b~, c~ and a2, b2, c2 are already normalized, 
then the direction cosines of the normal to the plane 
of constant absorption are proportional to 

( c2) a l  + a2 bl + b2 cl + 
. . . . . . .  , . . . .  

COS 5j. COS 5 2 ' COS 51 COS 5 2 COS 51 COS 

and these can be normalized to give the actual cosines 
a3, b3, c3. For the one special case, where the path 
length is constant through the whole volume of the 
polyhedron, all three cosines are zero, and this can 
easily be detected. This arises if the rays are entering 
and leaving the crystal through parallel faces and make 
equal angles with the normals of these two faces. 

The required rotation matrix must convert 

(a3, b3, c~) to (0, 0,1) 

and a matrix of the form given above, (9), is suitable. 
The equations of the form 

a3 cos 9 - c a  sin ~o = 0 

etc. can readily be solved for suitable (not necessarily 
unique) values of sin ~0, cos ~0, sin 0 and cos 0. 
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